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Abstract. Purpose – is to develop the Bayesian method of optimal engineering design by a series of experiments, aiming 
to manage experimental resources in a rational economic way. 

Research methodology – is based on modelling of experimental data by Gaussian random fields (GRF) and using ma-
trices of fractional Euclidean distances. Next, the P-algorithm for the planning of the experiment series is created in 
order to optimize the values of the response surface.  

Findings – the application of the developed method in engineering design enable us to create plans for the experiment 
series in order to create new functional products and processes managing experimental resources in a rational economic 
way. 

Research limitations – the creation of the plans of the experiment series can require a large amount of computer time 
related to the application of the Monte Carlo procedure in order to ensure the optimality of created plans. However, this 
limitation can be avoided using distributed computing tools. 

Practical implications – The created method helps engineers to seek solutions to experimental problems, considering 
the economic viability of each potential solution along with the technical aspects. 

Originality/Value – in creating functional products and processes engineers are using the experimental design process, 
which usually is highly iterative. The developed approach enables us to design the experimental series inflexible way, 
decreasing the number of required experiments and avoiding of rather expensive methods such as factorial experiments, 
steepest descent, etc., usually applied for experimental design in engineering practice.  

Keywords: Design of experiments, Bayesian method, Gaussian random fields, the economics of engineering, response 
surface. 

JEL Classification: C14 

Conference topic: Contemporary Issues in Business, Management and Economics Engineering. 

Introduction  

Application of economic principles in engineering is related to decision making regarding the allocation of limited 
resources (Weinberger, Sha, Saul, 2004; Morris, 2013). Engineers seek solutions to problems, and the economic via-
bility of each potential solution is normally considered along with the technical aspects. In creating functional products 
and processes engineers are using the experimental design process, which usually is highly iterative. Since parts of 
design process often need to be repeated many times the problems arise with resource allocation exploring sets of 
possible alternatives (Box & Draper, 2007; Bijan & Gorjidooz, 2016; Carpio, Giordano, & Secchi, 2017). Thus, engi-
neering design problems often require to create experiment series in order to optimize the values of the response surface 
that depends on various variables. This paper deals with the Bayesian experiment design method, based on the model-
ling of observation data obtained during the experiments by Gaussian random fields (GRF). That allows us to include 
the predictable information about the design variables into the model to be identified and to estimate the uncertainties 
of the observations. The novelty of the developed model is the application of matrices of fractional Euclidean distances 
between experimental observations points to model the covariances of the GRF. Thus, such a model enables us to 
avoid the application of positive correlation functions usually applied for creation of the GRF. Using the proposed 
model the P-algorithm for the planning of the experiment series is created in order to optimize the values of the response 
surface that depends on various variables. The algorithm is maximizing the expected increment in the response surface, 
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depending on measured experimental data, which is a complex multivariate integral in general. For evaluation of this 
integral and maximization of the expected increment the Monte Carlo method is developed in the Sampling Average 
Approximation framework. The created method is investigated by computer simulation for solving benchmark exam-
ples and is applied to the engineering problem: optimal design of wastewater filters. Hence, the developed approach 
enables us to design the experimental series in a flexible way, decreasing the number of required experiments and 
avoiding of known but rather expensive methods (Nooshin & Hamid, 2017; Maged, Haridy, Shamsuzzaman, Alsyouf, 
& Zaied, 2018). Although planning of series requires rather a long Monte Carlo computer simulations time the created 
method presents an economically and managerially efficient tool for the design of new engineering objects by a series 
of experiments. 

1. Modelling of experimental data by a Random Gaussian field  

Design of experiments is a systematic approach to engineering problem aiming at predicting the outcome by introduc-
ing a change of the preconditions, which is represented by one or more independent variables, also referred to as “input 
variables” or “predictor variables.” The change in one or more independent variables is generally hypothesized to result 
in a change in one or more dependent variables, also referred to as “response variables” or values on „response surface“ 
or „response function“. Experimental design involves not only the selection of suitable independent, dependent, and 
control variables but planning the experiments in an optimal way under given the constraints of available resources. 
There are multiple approaches for determining the set of design points (unique combinations of the settings of the 
independent variables) to be used in the experiment. Note that, recently engineers are using an experimental design 
practice such traditional technologies as factorial experiments, steepest descent, Box-Wilson procedure, etc., which 
usually are economically and managerially inefficient, because require to perform a large number of experiments at 
customizable established levels, etc. (Box & Draper, 2007; Nooshin & Hamid, 2017; Maged et al., 2017). The statis-
tical model also applied in a specific knowledge-based system to assist designers in configuring numerical design of 
experiments processes efficiently by taking into account variabilities and uncertainties (El-Gamal & Palfrey, 1996; 
Carpio et al., 2017; Blondet, Le Duigou, & Boudaoud, 2019). 

In this paper, the probabilistic model of response surface is considered, which values are obtained by observation, 
physical measurements or computer simulation, etc. Due to the fact that there are no further data except the measure-
ment performed at the experimental points, the surface which represents the objective response function can be de-

signed as a homogeneous Gaussian random field (GRF)  ,Z x  , which is a measurable function of random event   

in some probability space (Jones, 2001). Let us consider GRF with the constant mean vector: 

  ,EZ x E  , (1) 

and the covariance matrix 

       2, ꞏ ꞏ , ꞏ
T

E Z x E Z x E F       , (2) 

where   and   are parameters, 0  , E  denotes a K -dimensional vector-column of units, and F  is a positively 

defined matrix, the choice of which is discussed below. 
In this paper, a data model is developed, using the distances with fractional Euclidean distance matrices (Pozniak & 

Sakalauskas, 2017; 2019). Since it is unknown which of all the function variables are preponderant, they are considered 
as equivalent, and, thus, fractional Euclidean distances between the measurement points are calculated, that now are sym-

metric with respect to miscellaneous variables. Let a data set  , ˆX X X  be given, that contains suba set 

  1 2, ,..., NX x x x ,  

consisting of N  vectors, where experiments have been done and surface values obtained after physical experiments 
or computer simulations, etc., as well as the respective subset 

 1 2, ,.ˆ ..,N N KX x x x  ,  

consisting of vectors to be planned for a series of new experiments, where d
ix R , 1 i K  , 1d  . Let us denote 

a set of values of the known response function values as  

 1 2, ,...,
T

NY y y y , 

0 N K  , that were calculated for the set of points X.  
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In order to create the GRF model, the extended set  , cX x  is considered (Pozniak&Sakalauskas (2017), Poz-

niak&Sakalauskas (2019)). Let us denote a    1 1K K    matrix  

  
, 1

K

i j
i j

A x x




    
 ,  

degrees   of Euclidean square distances between the vectors of sthe et  , cX x , where 0 1   , 

   T
i j i j i jx x x x x x     , 1 i K  . Note that 

1

2
   in a special case of the usual Euclidean distances. Usu-

ally, the main tool for t,,e study of Euclidean distance matrix is the kernel matrix used for modelling of GRF covariates 
(Weinberger (2004), Pozniak and Sakalauskas (2017). It is proved in (Pozniak & Sakalauskas, 2017, 2019), that this 
matrix is positively defined, therefore such a choice is correct.  

Thus, the statistical model of the experimental data is presented in a simple and clear for designers way using 
only the matrix of pairwise distance between experimental points. 

2. Estimation and prediction of a Gaussian random field 

Let us consider an approach for the experimental data prediction based on modelling by GRF. Assume the data be 
modelled by the probabilistic Gaussian model with a constant mean (1) and the covariance matrix of type (2). Now let 
us decompose the matrix of fractional Euclidean square distances between points of 𝑋෨: 

T

A a
A

a

 
   

 , 
(3) 

where A is a submatrix of fractional degrees of Euclidean square distances between points of set X, a is a submatrix of 

fractional degrees of Euclidean square distances between points of X and X̂ ,   is a submatrix of fractional degrees 

of Euclidean square distances between points of X̂ . 

Specifically, the prediction of the response function in a subset X̂  is obtained as an a posteriori mean, using the 

vector of known values  1 2, ,...,
T

NY y y y , got by experimenting with subset X. Denote the values of GRF in a 

subset  X  by  

 1 2, ,...,ˆ T
N N KY y y y  , 

 ,i iy Z x  , N i K  . Using the expressions of the a posteriori mean vector and the a posteriori covariance 

matrix (Pozniak & Sakalauskas, 2017, 2019), one can get from: 

     1
1

1
;ˆ ˆ

T T
T

T

E A a
y X E Y Y Y A a E

E A E






    
      
  
 

 

(4) 

       ˆ ˆ ˆ ˆ ˆ
T

X E Y E Y Y Y E Y Y Y
 

      
 

 

   1 1
2 1

1
ˆ

T T T
T

T

a A E E A a
a A a

E A E

 




         
      
  
 

, 

(5) 

and 
1 2

2 1
1

)ˆ 1 ( T
T

T

Y A E
Y A Y

K E A E






  
        

 (6) 

is maximal likelihood estimation (MLE) of parameter  .  
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Remark. Note that the degree   is a perfect parameter of GRF as well, which can be estimated using the obser-

vation data. The least square estimate ̂  is estimated by the univariate minimization of variance parameter MLE (6): 
1 2

1
10 1

1 ( )
arg .ˆ

T
T

T

Y A E
min Y A Y

K E A E






  
        

 (7) 

The properties of this estimate are explored by computer simulation in section 5. 
Note, that engineering processes are often observed only partially as in a case considered above. Surrogate mod-

elling is a way to investigate the unobserved part of such processes (Carpio et al., 2017).  Thus, the developed model 
(1), (2) presents the surrogate model of experimental data, because of its accurate prediction (even with a relative few 
points for fitting) and statistical interpretation that allows one to build an estimate of the potential error in a manageri-
ally efficient way. 

3. Optimal planning of extremal experiments 

In creating functional products and processes engineers are using the iterative experimental design process. Resource 
allocation exploring sets of possible alternatives requires to perform the experimental design process in an optimal 

way. Assume, the set of experiments  1 2, ,.ˆ ..,N N KX x x x   should be planned at which the values of responsthe 

e function  1 2, ,.ˆ ..,N N KY y y y   are predicted using the method given above. The efficiency of experimental the 

eries is evaluated by introducing the utility function  

    1, max max ,.., ,ˆ 0max N K maxH Y y y y y  , (8) 

where max( )maxy Y .  

By using expressions (4)-(6), the multi-dimensional normal distribution density function is written down as fol-
lows: 

    ˆ ˆ, ,ˆp Y y X X   

           12
1

2 exp ,ˆ ˆ ˆ ˆ ˆ ˆ
2

L T
X Y y X X Y y X

  
          

 
 

(9) 

which describes the conditional distribution of predicted response function values in the subset 𝑋෠. 
Using (8), (9), one can write the expectation of the utility function as follows: 

 
 

       
1

1
max ,..,

ˆ ˆ,max ,.. , , ˆ

N K max

N K max
y y y

U X y y y p Y y X X dY





   . (10) 

A series of new experiments should be planned to maximize the expected increment of the objective response 
function. Thus, the plan for an optimal experiment series is a solution to the equation: 

 
  

          
1

1
max ,..,

arg max ,..,

ln , , , , .

ˆ

ˆ ˆ

N K max

opt N K max
X

y y y

opt opt

X max y y y

p Y y X X p Y y X X dY






  

 


 (11) 

The gradient of this function with respect to the set of planned series is as follows: 

 
 

  
          

  
     

1

1
max ,..,

1

ˆ

ln , ,
max ,.., , ,

ln , ,
max ,.., .

ˆ ˆˆ
ˆ ˆ

ˆ

ˆ ˆ

ˆ

N K max

N K max
y y y

N K max

p Y y X XU X
y y y p Y y X X dY

X X

p Y y X X
E y y y

X








 
     

 

   
  

 
 


 (12)

After some manipulations, one can make sure that the solution of (11) is the same as the solution to the minimi-
zation problem of the following objective function: 
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              1
max max

1ˆ ˆ ˆ ˆ ˆ ˆ ˆln Y, Y, Y Y
2

TF X X E H y tr E H y X       

               1 1ˆ ˆ ˆ ˆ ˆ, ,
T T

max maxy X X y X E H y E H y X y X       


. 

 
(13) 

Design of a series of experiments according to (13) is related to the calculation of complex multivariate integrals. 
The problem of (13) maximization is solved in an iterative way by the Monte Carlo method and the Sampling Average 
Approximation method (Shapiro (2013)). Let 𝑀 standard ሺ𝐾 െ 𝑁ሻ dimensional Gaussian vectors 𝑣௝ be simulated and 
fixed, 1 ൑ 𝑗 ൑ 𝑀. Assume 𝑘 iterations of the method to be performed and some subset 𝑋෠௜ be obtained. Then the sample 
of response function values in the set 𝑋෠௜ is computed in the following way:  

   ˆ ˆj jT
i iy y X v b X   , (14) 

where      ˆ ˆ ˆT

i i ib X b X X   . One can then denote the Monte Carlo estimates as follows: 

    
1

,ˆ 1
,

M
j

max max
j

E H Y y H y y
M 

  ; (15) 

    
1

1
,ˆ ˆ ,

M
j j

max max
j

E H Y y Y H y y y
M 

    ; (16) 

    
1

1
, ,ˆ ˆ ˆ

M
T j j jT

max max
j

E H Y y Y Y H y y y y
M 

      . (17) 

The estimates are inserted into expression (14), that is maximized by X̂  for fixed estimates (15)–(17). Denote 

this intermediate optimization result as 1
ˆ

iX  . Now, a new  sample (14) is recalculated using 1
ˆ

iX   for computing 

conditional expectation (4), covariances (5), while the maximization of (13) is repeated. The process is stopped when 
the difference of results of two consecutive steps become negligible. The result of the last optimization presents us a 
pl with withan of the new experiment series.  

Designed Bayesian plans distinguish with flexibility because they enable us to avoid of multi-factor experiments, 
usually applied in traditional engineering design. The key to using developed model for experimental optimization lies 
in balancing the need to exploit the approximating surface by sampling where it is minimized, with the need to improve 
the approximation by sampling where prediction error may be high. 

4. Computer modelling 

The behaviour of the developed model was investigated through a benchmark test function and an engineering optimi-
zation problem: optimal design of wastewater filter. The algorithm developed has been explored by computer simula-
tion using the test function 

     2 2
, 5 5f x y x y    , 0 10x  , 0 10y  . 

Developed data model depends on two parameters: variance 2  and degree  , which can be estimated by max-

imal likelihood method, using (6), (7). Properties of these parametres have been explored by Monte Carlo method. The 
computer simulation experiment has been performed generating N = 200 samples of K = 20 randomly simulated points 
for test function in its domain. The histogram of vathe riance parameter 2  is depicted in Figure 1, meathe n of 

variance, and standard deviation are as follows: 2 0.1924Average  , 2
. 0.024st dev  . The histogram, of parameter   

is depicted in Figure 2, mean, and standard deviation are as follows: 0.7537Average  , . 0.0093st dev  . Maximal 

likelihood estimation of data model parameters (e.g. see Figure 1 and Figure 2). Thus, the explored benchmark showed 
that parameter of fraction   is perfe the ct parameter of the created a model.  
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Figure 1. Variance parameter,   

 

Figure 2. Optimal Euclidean fraction degree,   

Further, the algorithm for experiment series planning has been explored by the Monte Carlo method. The set from 
10N   has been uniformly randomly simulated in the feasibility set and respective values of the test function have 

been computed. The minimal value of the test function was established: 1.5300419miny  . Next, the initial values of 

the planned series have been chosen randomly: 

1
5.7588904 5.5526906

6.23848 5.0890846
x

 
  
 

, 

the value of the function (8) was 0.1977166, and after optimization, this value achieved 0.1239016. The solution of 
this optimization was: 

2
4.6325385 5.3802934

4.1278819 4.9403434
x

 
  
 

, 

the value of function (8) 0.201207 and after optimization 0.1995037. The new solution of the latter task 

3
4.7138052 5.4645915

4.1690978 5.0429421
x

 
  
 

 

has been minimized, the function value at these points was 0.2056391, which after the optimization changed insignif-
icantly and therefore it was taken as a new series for experiment planning. The values of the test function at the points 

of the proposed series 3x  were 0.5456672 and 0.8320111, which illustrates the increment of the response function in 
the planned series. Thus, computer experiment confirms the applicability of the developed approach for experimental 
optimization of response surface in engineering design. 
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5. Modelling of effectiveness of surface wastewater treatment filter filler 

The created method is applied for solving of engineering problem: optimal design of wastewater filters. Let 

 1 2 3 4, , ,
T

x x x x x  be filler ratios vector, where 1x – quartz sand (QS), 2x – shredded autoclaved aerated concrete 

(SHAAC), 3x – stone wool (SW), 4x – biochar (BC). Denote the vector of results of filter characteristics measurement: 
j

iY , 1 i m  , 1 j K  , where 4K  – number of experiments, and m – number of filter characteristics. Assume 

these filter characteristics be describing capability to treat different wastes. By the example, these filters with different 
fillers are designed for treatment of main pollutants of the surface wastewater by total carbon (TC). 

The experiments, where performed with four filters filled by following fillers: 
1 – Quartz sand (100%);  
2 – Shredded autoclaved aerated concrete (66.7%) and stone wool (33.3%); 
3 – Shredded autoclaved aerated concrete (33.3%) and biochar (66.7%); 
4 – Shredded autoclaved aerated concrete (33.3%), biochar (33.3%) and stone wool (33.3%). 
Thus, the experiment matrix of filler proportions is as follows: 

1 0 0 0

0 0.667 0 0.333

0 0 0.333 0.667

0 0.333 0.333 0.333

X

 
 
 
 
 
 

. 

The filtration characteristics measurement of element TC, at this experiment matrix, were: 
 

Filter TC 

1 27.3 

2 38.3 

3 50.7 

4 43.2 

 
The new plan for proportions for filter fillers by the developed method has been created: 

0 1 0 0

0 0 0 1ˆ
0.333 0 0 0.667

0 0 0.16 0.84

X

 
 
 
 
 
 

. 

Performance of series from 4 experimental filters according to the plan X̂  should ensure the new construction of 
filter with increased efficiency of the filter.  

Conclusions  

Creation of functional products and processes using the experimental design often deals with problems of engineering 
economy, because of the necessity to carry out parts of the design process seeking economically and managerially 
efficient resource allocation.  This paper deals with the Bayesian experimental design method, based on the interpre-
tation of observations data by random Gaussian fields, obtained during the experiments. The findings obtained allows 
us to include the predictable information about the engineering design variables into the model in order to identify and 
estimate the uncertainties of observations. Using this approach, the novel method is created to plan a series of extremal 
experiments by maximizing the expected increment on the response surface. The created method is investigated by 
computer simulation for solving test examples and is applied in the optimal design of wastewater filters as well. The 
developed approach enables us to design the experimental series inflexible way, decreasing the number of required 
experiments and avoiding of rather expensive traditional methods, such as factorial experiments, steepest descent, etc. 
Although the creation of the plans of the experiment series can require a large amount of computer time related with 
the application of Monte Carlo procedure in order to ensure the optimality of created plans, this limitation can be 
avoided using distributed computing tools, besides, this amount of computer time often meets requirements in real 
design practice. Hence, theoretical investigation, solving of the benchmark example and application to real engineering 
design, enable us to conclude that the created method helps engineers to seek solutions to experimental problems, 
considering the economic viability of each potential solution along with the technical aspects. 
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